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Abstract

Shear wave, Horizontally polarized wave propagation in an anisotropic elastic medium with non-uniform orienta-
tion of the principal axis of anisotropy, which is a good mathematical model of an injection-molded short-fiber rein-
forced plastic (FRP), is investigated by means of the high frequency approximation. Variations of the phase, ray and
power flow density of a plane SH wave are obtained in simple mathematical forms and are graphically illustrated. Wave
front patterns are also constructed as an envelope of phase curves. As a result, major wave phenomena in the transition
layer with the non-uniform orientation of the principal axis of anisotropy are clarified. The information obtained is
found to contribute to further development of the ultrasonic inspection technique for detecting the fiber orientation in
the FRP. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Injection molded short-fiber-reinforced plastics (FRP) have been widely used in important mechanical
elements, such as the cam shafts, in small reciprocal engines and the stationary parts of the automobile
transmissions (Tai, 1997). Nevertheless, there still remain some technical problems to be solved in terms of
the product design procedure for these types of composite materials, namely those on non-uniform fiber
orientation. The fibers in the FRP have the random orientation in general. However, near “weld line”
which is formed behind a pin or at the front of two counter flows as shown in Fig. 1, the fiber orientation
varies from horizontal to vertical direction along the line, AA’, in the figure. In addition, when a thick (the
thickness > 3 mm) FRP plate is molded by injection, the fibers are not uniformly aligned even in a cross-
section along the flow direction. Its fiber orientation is almost parallel to the flow direction in the skin layer
near the surface, but normal to the direction in the core region as shown in Fig. 1 (b) (Honnma, 1998). Most
load applied to the plate is thus supported only by the skin layer, and the inner core has less contribution to
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Fig. 1. Schematic fiber orientation in an injection molded FRP: (a) behind a pin and (b) counter flows from multiple gates.

the strength of the plate. The fiber orientation is, therefore, quite an important factor in the production
design of the FRP. At present, there is no reliable non-destructive inspection technique for detection of the
weld lines or estimation of the skin layer thickness.

There are some methods (Kikuchi and Koyama, 1996) available for computer simulations on these
matters, but no practical technique for inspection of the real products. Though a research project has
recently started for developing such an ultrasonic inspection technique for the injection-molded FRP
(Kuriyama et al., 1997), they have encountered some difficulties in data analysis owing to the lack of the
basic knowledge on the wave propagation in the material with this type of anisotropy. Wave analysis in the
transition layer of anisotropy is necessary to clarify the phenomenon. However, many works for the wave
analysis have previously been done only for the case of the rectilinear principal axis of anisotropy and the
information on the wave propagation in the transition layer of anisotropy is quite scarce. Hence, the wave
phenomena, especially in the transition region where the orientation of the principal axis of anisotropy
drastically changes, should be clarified in order to develop a reliable ultrasonic inspection technique for
detection of the weld line and the thickness of the skin layer. This is our motivation of the present work.

Fortunately, the injection-molded FRP can be treated as an anisotropic elastic medium with non-uni-
form orientation of the principal axis of anisotropy. In the transition layer between the skin layer and the
inner core in the FRP plate, the principal axis is considered to rotate from the direction almost parallel to
the surface to that normal to it as shown in Fig. 3. The fiber orientation, which is represented as the di-
rection of the principal axis of anisotropy in the mathematical model, is a function of the depth in the
transition layer. Rigorous mathematical analysis of the wave propagation in this layer is very difficult.
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Thus, as a first step, we consider SH-wave propagation in the transition layer employing the high frequency
approximation technique (the ray method). In our analysis, we consider a transition layer sandwiched by
two half spaces. One represents the skin layer, and the other the inner core. They are perfectly bonded to
the transition layer. Two incident waves propagating into the transition layer are considered, namely; the
wave coming from the skin layer and the one from the inner core. Our focus of interest is placed on the
basic wave properties, namely the phase, ray, power flow density and wave front patterns of the SH waves
in the transition layer.

2. Formulation of problem

Rigorous mathematical treatment of wave propagation in the injection molded FRP is very difficult. In
order to discuss effects of variable fiber orientation on wave propagation, we have to introduce some as-
sumptions for the sake of the simplification. The first assumption is that the fiber orientation is variable
only on a plane and constant along normal direction to the plane. The second one is that the fiber is very
small in length and its orientation is continuously changing on the plane. With these assumptions, we can
introduce a local Cartesian coordinates system (X, Y, Z) attached to one fiber in the FRP (we call it a “fiber
point” hereafter), as shown in Fig. 2. All fibers in the FRP are laid on the X-Y plane, such that the fiber
orientation at the fiber point coincides with the X-axis, and the orientation is constant along the Z-axis. As
the third assumption, there is no volumetric change of the fibers in the entire region of the FRP. Thus, if we
estimate the elastic modulus at a fiber point, Hooke’s law at this fiber point is valid all over the region
within a frame of the local coordinates system.

Now, we can consider that the FRP is an orthotropic material and its elastic response is governed by the
form of

¢. off — set angle

7
P
a——

Fig. 2. Local and global coordinates systems.
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Oxx Cu Cp Cis 0 0 0 Exx

Oyy Ch Cn Cy 0 0 0 Eyy

ozz| _|Ciz C G 0 0 0 &7z (1)
Oxy 0 0 0 Cu4 O 0 exy |’

Oyz 0 0 0 0 C55 0 Eyz

Ozx 0 0 0 0 0 C66 Ezx

where C;; are elastic constants.

Since the fiber orientation is constant along the Z-axis, we can decompose a two-dimensional defor-
mation into in- and anti-plane deformations. In order to discuss SH-wave propagation in the FRP, we
consider the anti-plane deformation. Then, uz(X, Y, ¢) is the only non-zero component of the displacement
and Hooke’s law can be reduced as

Oyz | C55 0 Eyz
)= ] ®
Now, let us transform the local coordinates system (X, Y) attached to a fiber point to the global co-

ordinates system (x, y) as shown in Figs. 2 and 3. Let ¢ denote an off-set angle of the fiber orientation
measured from the global x-axis, Hooke’s law of Eq. (2) is also transformed to

Fig. 3. A transition layer sandwiched by the skin layer and the inner core.
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As we consider wave propagation in the transition layer sandwiched by two half spaces, the region of
analysis is decomposed into three sub-regions, namely Region 1: the “inner core” (4 < y), Region 2: the
“transition” layer (0 < y < &), Region 3: the “skin” layer (y < 0), as shown in Fig. 3. Super- or sub-script
j(=1, 2, 3) denote the sub-regions. In the transition layer, the off-set angle from the x-axis is varying from
¢ = 0 to m/2. We assume that the off-set angle at each fiber point is in proportion to the layer depth y, as

¢ =my/(2h); 0<$<n/2. ()

Consequently, Hooke’s law in the transition layer is given by the simple form:

d?71 [ Gyeos’p + G,sin’¢p (G, — G,)singpcose | | ul?, (5)
al?) (G; — G,)singcos¢  Gysin’p + G, cos?¢ | | ul?) |’
where G,, = Css and G, = Cg, and we denote that uy) as the anti-plane displacement. Eq. (5) can also be
applied to the skin layer with zero off-set angle by letting ¢ = 0 and j = 3, and to the inner core with

¢ =n/2 and j = 1. As we consider the anti-plane deformation for SH wave propagation, equation of
motion in each sub-region is given by the form:

ol Ao, =pi,, j=123. 6)

For the boundary condition at two interfaces: y = 0, 2, we employ the condition of perfect bonding.

3. High frequency approximation

Now, we introduce dimensionless variables:

X Ty __ Tept

bt = 7
E=m n=0, 1= ()
and material parameters:
1- l1—-¢ G, Gr+G,)/2
ety e G (G G)/2 (8)
lL+v l1+¢ Gy p
The displacement equation of motion and Hooke’s law in the transition layer are
(1+ gcosn)uf?& +2¢ sinnuf?éﬂ + (1 —ecosnu®, + acosnuf?é +esinqul® = u?_, 9)
0'(2) T[,U, 1 1 (2
| T + ecosn esiy u, (10)
al?) h esiny I —ecosn | |u® |
The similar equations,
(1=l + (1 + e, =ull, (11)
o] _mp[l—¢ 0 ul), (12)
all) h 0 I+ef|ul) |’

are given for the inner core, and
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(A +eul + (1 — e =uld (13)
cd muy[14+e 0 u?,
[oﬁ]—ﬂ 0 1_8] ) | a4

for the skin layer.
A time harmonic wave with the dimensionless frequency w and the wave number « is expressed by

u?) = W(n)explio(t — x&)}, j=1,2,3. (15)

Here, the dimensionless frequency o is related to the actual frequency @w by w = hw/(nc,). Substituting Eq.
(15) into Egs. (9), (11) and (13), we have ordinary differential equations for displacement amplitude W;(y).
For amplitude W5 () in the transition layer, we have a complicated equation as

(1 —ecosn) W' (1) + (1 — 2ikw)esinngW; (n) + [w*{1 — k*(1 + ecosn)} — iekw cosn|Wa(n) = 0. (16)

It is very difficult to get an exact solution of the above Eq. (16), but possible to obtain an approximate
solution using the high frequency approximation (Cerveny and Ravindra, 1971). The approximate solution
is expressed in the series form of inverse power of frequency as

Wa(nn) = {F(n) + O(o™")}exp{iwg(n)}. (17)
Substitute this equation into Eq. (16), and equate the same power of frequency, the Eikonal equation:

(1 —ecosn){g' ()} — 2xesinng’ (1) — {1 — k(1 + ecosn)} = 0, (18)
is obtained from the highest order, O(w?), and the amplitude equation:

2{(1 — scosn)g (n) — resinn}F' () + [{(1 — scosn)g (n)} — xecosnlF(n) =0, (19)

from O(w'). The solutions of Egs. (18) and (19) are given by

"y/(1 —ecosn) — k2(1 — &2) d
1 —ecosy

g(n) = xlog(l —ecosn) & n, (20)

F(n) = {(1 —ecosnp) — i*(1 — &)} /4. (21)
Then, we have the approximate amplitude in the transition layer:

_ exp{ioklog(l — ecosn)} (" By(n)
o= B0 en{ io [ TG}

N Gy S U1 )

We use the above equation as the solution in the transition layer. However, it should be noted that the

terms of O(w™!) in Eq. (17) is neglected and the approximate solution is valid only for the high frequency

region. This is because we have neglected the terms of O(®°) in the differential equation (16). The other

restriction is 3, # 0. This states that the approximate solution is not valid at a turning point of ray.
Two other solutions for the skin layer and the inner core can be exactly obtained as

Ws(n) = Asexp( +iwfsn) + Bsexp ( — iwfyn), (23)

for the skin layer, and

Wi(n) = Avexp{ +iof(n — 1)} + Brexp{ — iof;(n — 1)}, (24)
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for the inner core, where

B = #4__38);62’ B2(n) = /1 — ecosn — (1 — &2)x?, By = \/#~ (25)

In the above three Eqs. (22)-(24), coefficients 4; and B; are unknown. However, when we consider the
incident wave coming from the skin layer or the inner core, coefficients B; and 4; should be the known.
Applying the continuity conditions at two interfaces,

o - o2 = [ -] =0, y=0.

vz vz

(26)
{a)(;) - a}i)} = [ui” - ui”] =0, y=h,
we have for displacement amplitudes W;(n) as
. 0 . I +e .
Wi(n) = Ajexp{ + iwf,(n — )} + B; gzg )exp{lwrclog () —iwf(n — m)
,(m) l—c¢
. " B()
- _ P 2
1w/0 l—scosndn ’ 27)

B , l+e [T Ba(n)
W (n) = 4, ﬁi(’?) exp{ — 1wxlog(7l — scosn) — lcu/’7 T —zgcosnd”}
B,(0) _ 1 — ecosy (" B(n)
+B3\/;3£6Xp{ +1w;€10g (ﬁ) — 1(1)/0 #C()Sl/[dn}’ (28)

By (m)
B»(0)

exp{ —iwxlog <l+e) +iwpfin — iw/n ﬁzw)dn} + Byexp{ —iwfsn}.
0

1—c¢ 1 —ecosny
(29)

In Eq. (27), the first term with coefficient 4, is the incident wave in the inner core and the second term
with coefficient Bj is the transmitted wave coming from the skin layer. Similarly, in Eq. (29), the term with
B; gives the incident wave and that with 4, gives the transmitted wave from the inner core. The term with
coefficient 4; in Eq. (28) is the transmitted wave coming from the inner core and that with Bj is also the
transmitted wave from the skin layer. It should be noted that no reflected wave terms are in these equations,
since the axis of anisotropy and all material parameters are continuous across the two interfaces: y = 0 and
h. Then, the wave does not reflect at these interfaces and all wave energy passes through the interfaces.

4. Incident wave from the skin layer

When the incident wave is coming from the skin layer with amplitude B; and the incident angle ¢ as
defined in Fig. 3, the wave number « is given by
tan
K= ¢ . (30)
V1+ey/v+ tan?e
In this case, the both, , and f8,(5), are real for all # and the incident angle ¢. Then, all transmitted wave in
the transition layer can reach to the inner core without turning.
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In order to derive the power flow density, we extract the real part from the term with coefficient B; in Eq.
(28). The displacement in the transition layer is

0) L—ecosn  [" Baln)
@ _p Ba - 1 - 1 —/ U ) 31
u 3 ﬁz(”)cos [w{r k& + klog T 7 —scosndn (31)
Phase and ray curves are easily obtained from the argument in the above cosine function. They are
N n
Phase - f(n) = log ﬂ _1 / Mdn _|_E’ (32)
1—¢ K Jo 1 —é&cosny K
1 —ecosy
R —————dy. 33
ay: c(n / B(n) — Kesiny 1 (33)

The phase plane of the incident wave in the skin layer is flat. However, as given by Eq. (32), the phase
plane of the transmitted wave in the transition layer is curved, because of continuous variation of the
principal axis of anisotropy. The ray trajectory of the transmitted wave is also curved. The variations of the
phase and ray in the transition layer are shown in Fig. 4(a) and (b). These figures illustrate that the ray with
the positive incident angle, ¢, bends with increase in the incident angle. When the ray has the negative
incident angle, it is almost straight. This means that waves in the anisotropic medium are dragged into a
direction of the greater elastic modulus. In order to make this effect clear, wave energy should be discussed.

The power flow density through a plane normal to the vector, n = (n,,n,), is defined as

2n/w 0 )
w ; ; u
P =52 [ (ol +oln) T (34)

If we define the energy flow direction y; as (ny,n,) = (siny;, cosy;) in each region, the maximum power
flow density in the skin layer can be expressed by

@) (b)

@ =-60
@=-30°

Phase Curve

09
08 G, /G, =01
0.7
0.6
0.5
04
03
0.2
0.1

-y/h >
-y/h >

4 05 0 05 1 15 2 25 A 0 1 2 3 P 5 s
-x/h > -x/h >

Fig. 4. Phase curve and ray in the transition layer (incident wave is coming from the lower skin layer): (a) phase curve and (b) ray.
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HoCo o _\2 [V 4+ tan’ep
P,="—"—41 —B _— 35
3 2 +8( h %> v+ tan?¢’ (35)

and its flow direction is

¢3::tan1<tanq)>. (36)

v

The maximum power flow density in the transition layer is also given by

toco (e, 2 fa(0) V(1= @)t efa(nysinny + {(1 — ecosn)fy(n))
Pr(n) = 2 (733) B> (1) 1 — ecosy ’ (37)

and its flow direction is

1 —¢ K esiny
= tan™! . 38
Va(n) = tan { 1 —ecosn Bo(n) = acosn} (38)

Fig. 5(a) shows variation of the power flow density with the depth # in the transition layer. The power
flow density is changing its magnitude drastically near the skin layer. However, at the inner core, where the
fiber orientation is normal to the layer, the power flow direction is parallel to that of the fiber. In particular,
when the incident angle is zero or close to zero (¢ = 0), it has the maximum value at a depth. To show these
visually, the power flow density on a ray is computed. The arrows in Fig. 5(b) and (c) show the magnitude
of the power flow density at a point on the ray.

5. Incident wave from the inner core

When an incident wave with the amplitude 4; is coming from the inner core, its wave number is given by

o — tan @ (39)
VIFe/1+ vtanZp
The phase and ray curves in the transition layer are given by
1 —ecosy L [ B T

P : =1 _ ) - — - 4

hase : <(n) og( l+e ) K/,7 l—scosndn+x’ (40)
" 1—¢cosy

Ray : & :K/ ——————dn. 41

v+ &(n) Bt & wesing " (41)

In this case, f5,() becomes pure imaginary in a region of 7 in the transition layer. The solution of Eq.
(28) is valid:

() if 0< @ < tan~'(1/v/1 — v), the transmitted wave can reach to the skin layer.

(2)if tan"'(1/v1 —v) < ¢ and 5. <y < 7, where

o tanp — 1/(1 —v)

The transmitted wave turns at # = 5. and then goes back to the inner core.
Fig. 6(a) and (b) show the phase curve and ray trajectory for a limited range of incident angle,
0 < |p| < tan"!(1/+v/1 —v) within which the ray does not turn and reach the skin layer.
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Fig. 5. The maximum power flow density in the transition layer: (a) variation with depth, (b) power flow density on a ray (positive

incident angle) and (c) power flow density on a ray (negative incident angle).

The maximum power flow density of the incident wave in the inner core is given by

)

toco (T N2 [(1 —e)(1+12tan’p)
ot (50,
2 \h 1 + vtanZ¢p

and its flow direction is
¥, = tan"'(vtano).

Then, the power flow density and its flow direction in the transition layer are given by

e (o N2 a(m) (1= @)k — ey () sinn) + {(1 — ecosn)By ()}
PZ(H)_OT(TAI) B>(17) 1 —ecosn

)

(43)

(44)

(45)
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Fig. 6. Phase curve and ray in the transition layer (incident wave is coming from the upper core): (a) phase curve and (b) ray.

2

1—¢ K gsing
= tan™! - . 46
Va(n) = tan { 1 —ecosny fr(n) 1-— scosn} (46)

Fig. 7(a) shows variation of the power flow density with the depth 5 in the layer. Though the incident
angle is small, the power flow density is changing its magnitude drastically near the lower interface. Fig.
7(b) and (c) show the power flow density on a ray. The arrows in the figures show the magnitude and
direction of the power flow density at the depth on the ray.

6. Wave front curve

Since we have employed the high frequency approximation, it is possible to construct a wave front curve.
Using phase curve equation (32), the time evolution of wave front pattern from a point source placed at the
coordinates origin (0, 0) is constructed as an envelope of phase curves. Fig. 8 show these for two pa-
rameters, v = 0.5 and 0.05. The wave front curve at the initial time is nearly elliptic and then gets deformed
as the time goes. The evolution from the elliptic curve is more affected when the anisotropy is stronger. The
deformed edge, we call it the “deepest point” in the transition layer, can be derived analytically from the
phase curve equation (32) with zero incident angle ¢ = 0. The deepest point (¢*,%*) on the wave front in
the transition layer is given by

&= tog (1), (47

1—¢

where #* is a solution of the transcendental equation:

" 1
- ——dyp =0. 48
‘ /0 v/1 —¢cosy 1 (48)

The integral in the above equation can be evaluated in terms of elliptic integrals. Then, Eq. (39) is rewritten
by
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Fig. 7. The maximum power flow density in the transition layer: (a) variation with depth, (b) power flow density on a ray (positive
incident angle), and (c) power flow density on a ray (negative incident angle).

2 2¢ . 2¢
——= k(=) -F /2 = 4
T Vi T sin” (cos(n*/2)), T 0, (49)

where K (x) and F(¢,x) are the complete and incomplete elliptic integrals.
The first touch of the wave front at the upper edge of the transition layer is at the time

2 % 2e
V1+e l+e¢
and its horizontal shift is

& = —log(v). (51)

These are shown in Fig. 9.

T =

: (50)
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Fig. 8. Construction of wave front curve in the transition layer: (a) G,/G, = 0.05 and (b) G,,/G,; = 0.5.
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Fig. 9. The deepest point on a wave front in the transition layer.

7. Conclusion

Characteristics of SH wave in an anisotropic elastic medium with variable off-set angle of the principal
axis of anisotropy is considered as a model of injection-molded FRP. Employing the high frequency ap-
proximation, the phase and ray curves, power flow density and wave front patterns are discussed and are
illustrated.

It should be mentioned that the direction and magnitude of the wave energy are changing drastically
near the skin layer, not near the inner core. Wave front curve originated at the coordinates origin gets
deformed and dragged into the fiber direction, as the time goes.
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The results are instructive for experimentalists. However, in the present work, the case of wave turning is
not considered. This is left to our future work.
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